Cargando…

Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal

[Image: see text] During the production process of coalbed methane, the generation and migration of coal fines can obstruct fractures in coal reservoirs and reduce their permeability. In order to investigate the effects of coal fines migration on the porosity and permeability of coal reservoirs, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Tiancheng, Wei, Yingchun, Liu, Ziliang, Li, Biao, Cao, Daiyong, Wang, Anmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468841/
https://www.ncbi.nlm.nih.gov/pubmed/37663515
http://dx.doi.org/10.1021/acsomega.3c03433
_version_ 1785099312135405568
author Xie, Tiancheng
Wei, Yingchun
Liu, Ziliang
Li, Biao
Cao, Daiyong
Wang, Anmin
author_facet Xie, Tiancheng
Wei, Yingchun
Liu, Ziliang
Li, Biao
Cao, Daiyong
Wang, Anmin
author_sort Xie, Tiancheng
collection PubMed
description [Image: see text] During the production process of coalbed methane, the generation and migration of coal fines can obstruct fractures in coal reservoirs and reduce their permeability. In order to investigate the effects of coal fines migration on the porosity and permeability of coal reservoirs, we conducted core water flooding experiments, low-field nuclear magnetic resonance (NMR), and low-temperature N(2) adsorption experiments to study the variations in porosity and permeability of cataclastic coal during coal fines migration and the impact of coal fines migration on porosity and permeability. The experimental results reveal that the initial porosity ratio of cataclastic coal exhibits the characteristics of micropore > macropore > transitional pore > mesopore, with the pore types being predominantly fissured. The porosity of pores larger than 1000 nm and those larger than 10,000 nm exhibit consistent trends before and after water flooding, indicating that the blockage or unblocking of pores with radius larger than 10,000 nm by coal fines can also cause blockage or unblocking of some interconnected macropore. The early stage of flooding is the main period for coal fines migration and production in cataclastic coal, during which the mass concentration of coal fines production is higher and some macropores and fractures become blocked, resulting in a larger decrease in porosity. The higher the initial permeability of cataclastic coal samples with a larger end-face fracture density, the more similar the variations in porosity and permeability of pores larger than 10,000 nm during the flooding experiment, indicating that coal fines mainly block interconnected pores and fractures with radius larger than 10,000 nm through migration, thereby reducing permeability. This study provides a theoretical basis for the efficient production of coalbed methane.
format Online
Article
Text
id pubmed-10468841
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104688412023-09-01 Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal Xie, Tiancheng Wei, Yingchun Liu, Ziliang Li, Biao Cao, Daiyong Wang, Anmin ACS Omega [Image: see text] During the production process of coalbed methane, the generation and migration of coal fines can obstruct fractures in coal reservoirs and reduce their permeability. In order to investigate the effects of coal fines migration on the porosity and permeability of coal reservoirs, we conducted core water flooding experiments, low-field nuclear magnetic resonance (NMR), and low-temperature N(2) adsorption experiments to study the variations in porosity and permeability of cataclastic coal during coal fines migration and the impact of coal fines migration on porosity and permeability. The experimental results reveal that the initial porosity ratio of cataclastic coal exhibits the characteristics of micropore > macropore > transitional pore > mesopore, with the pore types being predominantly fissured. The porosity of pores larger than 1000 nm and those larger than 10,000 nm exhibit consistent trends before and after water flooding, indicating that the blockage or unblocking of pores with radius larger than 10,000 nm by coal fines can also cause blockage or unblocking of some interconnected macropore. The early stage of flooding is the main period for coal fines migration and production in cataclastic coal, during which the mass concentration of coal fines production is higher and some macropores and fractures become blocked, resulting in a larger decrease in porosity. The higher the initial permeability of cataclastic coal samples with a larger end-face fracture density, the more similar the variations in porosity and permeability of pores larger than 10,000 nm during the flooding experiment, indicating that coal fines mainly block interconnected pores and fractures with radius larger than 10,000 nm through migration, thereby reducing permeability. This study provides a theoretical basis for the efficient production of coalbed methane. American Chemical Society 2023-08-17 /pmc/articles/PMC10468841/ /pubmed/37663515 http://dx.doi.org/10.1021/acsomega.3c03433 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Xie, Tiancheng
Wei, Yingchun
Liu, Ziliang
Li, Biao
Cao, Daiyong
Wang, Anmin
Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title_full Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title_fullStr Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title_full_unstemmed Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title_short Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal
title_sort experimental investigation on the impact of coal fines migration on pores and permeability of cataclastic coal
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468841/
https://www.ncbi.nlm.nih.gov/pubmed/37663515
http://dx.doi.org/10.1021/acsomega.3c03433
work_keys_str_mv AT xietiancheng experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal
AT weiyingchun experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal
AT liuziliang experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal
AT libiao experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal
AT caodaiyong experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal
AT wanganmin experimentalinvestigationontheimpactofcoalfinesmigrationonporesandpermeabilityofcataclasticcoal