Cargando…

Spectroscopic, Biological, and Topological Insights on Lemonol as a Potential Anticancer Agent

[Image: see text] A monoterpene alcohol known as lemonol was investigated experimentally as well as theoretically in order to gain insights into its geometrical structure, vibrational frequencies, solvent effects on electronic properties, molecular electrostatic potential, Mulliken atomic charge dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Ram Kumar, A., Selvaraj, S., Azam, Mohammad, Sheeja Mol, G.P., Kanagathara, N., Alam, Mahboob, Jayaprakash, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468887/
https://www.ncbi.nlm.nih.gov/pubmed/37663516
http://dx.doi.org/10.1021/acsomega.3c04922
Descripción
Sumario:[Image: see text] A monoterpene alcohol known as lemonol was investigated experimentally as well as theoretically in order to gain insights into its geometrical structure, vibrational frequencies, solvent effects on electronic properties, molecular electrostatic potential, Mulliken atomic charge distribution, natural bond orbital, and Nonlinear Optical properties. The frontier molecular orbital energy gap values of 5.9084 eV (gas), 5.9261 eV (ethanol), 5.9185 eV (chloroform), 5.9253 eV (acetone), and 5.9176 eV (diethyl ether) were predicted, and it shows the kinetic stability and chemical reactivity of lemonol. Topological studies were conducted using Multiwfn software to understand the binding sites and weak interactions in lemonol. The antiproliferative effect of lemonol against the breast cancer cell line Michigan Cancer Foundation (MCF-7) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while nuclear damage, condensation, and reactive oxygen species generation were identified using acridine orange/ethidium bromide, propidium iodide, and dichlorodihydrofluorescein diacetate staining. The theoretical and experimental findings are highly correlated, confirming the structure, and the results of in vitro studies suggest that lemonol acts as a potent inhibitor against the human breast cancer cell line MCF-7, highlighting its strong antiproliferative activity.