Cargando…
Predictive value of radiomics-based machine learning for the disease-free survival in breast cancer: a systematic review and meta-analysis
PURPOSE: This study summarized the previously-published studies regarding the use of radiomics-based predictive models for the identification of breast cancer-associated prognostic factors, which can help clinical decision-making and follow-up strategy. MATERIALS AND METHODS: This study has been pre...
Autores principales: | Lu, Dongmei, Yan, Yuke, Jiang, Min, Sun, Shaoqin, Jiang, Haifeng, Lu, Yashan, Zhang, Wenwen, Zhou, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469000/ https://www.ncbi.nlm.nih.gov/pubmed/37664048 http://dx.doi.org/10.3389/fonc.2023.1173090 |
Ejemplares similares
-
Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma
por: Liu, Guixue, et al.
Publicado: (2021) -
Incremental value of radiomics with machine learning to the existing prognostic models for predicting outcome in renal cell carcinoma
por: Xing, Jiajun, et al.
Publicado: (2023) -
Ultrasound-Based Radiomics Analysis for Predicting Disease-Free Survival of Invasive Breast Cancer
por: Xiong, Lang, et al.
Publicado: (2021) -
The predictive value of radiomics-based machine learning for peritoneal metastasis in gastric cancer patients: a systematic review and meta-analysis
por: Zhang, Fan, et al.
Publicado: (2023) -
The Impact of Preoperative Radiomics Signature on the Survival of Breast Cancer Patients With Residual Tumors After NAC
por: Zhang, Ling, et al.
Publicado: (2021)