Cargando…
AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line
Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469006/ https://www.ncbi.nlm.nih.gov/pubmed/37664863 http://dx.doi.org/10.3389/fendo.2023.1226808 |
_version_ | 1785099350042476544 |
---|---|
author | Yehezkel, Adi S. Abudi, Nathalie Nevo, Yuval Benyamini, Hadar Elgavish, Sharona Weinstock, Marta Abramovitch, Rinat |
author_facet | Yehezkel, Adi S. Abudi, Nathalie Nevo, Yuval Benyamini, Hadar Elgavish, Sharona Weinstock, Marta Abramovitch, Rinat |
author_sort | Yehezkel, Adi S. |
collection | PubMed |
description | Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease, can reverse steatosis and fibrosis in mice with pre-existing NASH and explore its mechanism of action. The mouse model of dietary-induced NASH reproduces most of the liver pathology seen in human subjects. This was confirmed by RNA-sequencing analysis. The Western diet, given for 4 months, caused steatosis, inflammation, and liver fibrosis. AN1284 (1 mg or 5 mg/kg/day) was administered for the last 2 months of the diet by micro-osmotic-pumps (mps). Both doses significantly decreased hepatic damage, liver weight, hepatic fat content, triglyceride, serum alanine transaminase, and fibrosis. AN1284 (1 mg/kg/day) given by mps or in the drinking fluid significantly reduced fibrosis produced by carbon tetrachloride injections. In human HUH7 hepatoma cells incubated with palmitic acid, AN1284 (2.1 and 6.3 ng/ml), concentrations compatible with those in the liver of mice treated with AN1284, decreased lipid formation by causing nuclear translocation of the aryl hydrocarbon receptor (AhR). AN1284 downregulated fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and upregulated Acyl-CoA Oxidase 1 and Cytochrome P450-a1, genes involved in lipid metabolism. In conclusion, chronic treatment with AN1284 (1mg/kg/day) reduced pre-existing steatosis and fibrosis through AhR, which affects several contributors to the development of fatty liver disease. Additional pathways are also influenced by AN1284 treatment. |
format | Online Article Text |
id | pubmed-10469006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104690062023-09-01 AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line Yehezkel, Adi S. Abudi, Nathalie Nevo, Yuval Benyamini, Hadar Elgavish, Sharona Weinstock, Marta Abramovitch, Rinat Front Endocrinol (Lausanne) Endocrinology Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease, can reverse steatosis and fibrosis in mice with pre-existing NASH and explore its mechanism of action. The mouse model of dietary-induced NASH reproduces most of the liver pathology seen in human subjects. This was confirmed by RNA-sequencing analysis. The Western diet, given for 4 months, caused steatosis, inflammation, and liver fibrosis. AN1284 (1 mg or 5 mg/kg/day) was administered for the last 2 months of the diet by micro-osmotic-pumps (mps). Both doses significantly decreased hepatic damage, liver weight, hepatic fat content, triglyceride, serum alanine transaminase, and fibrosis. AN1284 (1 mg/kg/day) given by mps or in the drinking fluid significantly reduced fibrosis produced by carbon tetrachloride injections. In human HUH7 hepatoma cells incubated with palmitic acid, AN1284 (2.1 and 6.3 ng/ml), concentrations compatible with those in the liver of mice treated with AN1284, decreased lipid formation by causing nuclear translocation of the aryl hydrocarbon receptor (AhR). AN1284 downregulated fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and upregulated Acyl-CoA Oxidase 1 and Cytochrome P450-a1, genes involved in lipid metabolism. In conclusion, chronic treatment with AN1284 (1mg/kg/day) reduced pre-existing steatosis and fibrosis through AhR, which affects several contributors to the development of fatty liver disease. Additional pathways are also influenced by AN1284 treatment. Frontiers Media S.A. 2023-08-16 /pmc/articles/PMC10469006/ /pubmed/37664863 http://dx.doi.org/10.3389/fendo.2023.1226808 Text en Copyright © 2023 Yehezkel, Abudi, Nevo, Benyamini, Elgavish, Weinstock and Abramovitch https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Yehezkel, Adi S. Abudi, Nathalie Nevo, Yuval Benyamini, Hadar Elgavish, Sharona Weinstock, Marta Abramovitch, Rinat AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title | AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title_full | AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title_fullStr | AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title_full_unstemmed | AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title_short | AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
title_sort | an1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469006/ https://www.ncbi.nlm.nih.gov/pubmed/37664863 http://dx.doi.org/10.3389/fendo.2023.1226808 |
work_keys_str_mv | AT yehezkeladis an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT abudinathalie an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT nevoyuval an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT benyaminihadar an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT elgavishsharona an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT weinstockmarta an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline AT abramovitchrinat an1284attenuatessteatosislipogenesisandfibrosisinmicewithpreexistingnonalcoholicsteatohepatitisanddirectlyaffectsarylhydrocarbonreceptorinahepaticcellline |