Cargando…
Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia
BACKGROUND: Previous studies have indicated that glucose metabolism and altered hippocampal structure and function play a pivotal role in cognitive deficits in schizophrenia (SZ). This study was designed to explore the inter-relationship between glucose metabolism, hippocampal subfield volume, and c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asociacion Espanola de Psicologia Conductual
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469074/ https://www.ncbi.nlm.nih.gov/pubmed/37663043 http://dx.doi.org/10.1016/j.ijchp.2023.100402 |
_version_ | 1785099365020336128 |
---|---|
author | Xiu, Meihong Fan, Yong Liu, Qinqin Chen, Song Wu, Fengchun Zhang, Xiangyang |
author_facet | Xiu, Meihong Fan, Yong Liu, Qinqin Chen, Song Wu, Fengchun Zhang, Xiangyang |
author_sort | Xiu, Meihong |
collection | PubMed |
description | BACKGROUND: Previous studies have indicated that glucose metabolism and altered hippocampal structure and function play a pivotal role in cognitive deficits in schizophrenia (SZ). This study was designed to explore the inter-relationship between glucose metabolism, hippocampal subfield volume, and cognitive function in the antipsychotics-naive first episode (ANFE) SZ patients. METHODS: We chose the fasting insulin, glucose, and insulin resistance (HOMA-IR) index as biomarkers of glucose metabolism. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). The hippocampal subfield volume, glucose metabolism biomarkers, and cognitive function were evaluated in 43 ANFE SZ and 29 healthy controls (HCs). RESULTS: Compared with HCs, SZ patients had higher fasting blood glucose and insulin levels and HOMA-IR (all p < 0.05). Correlation analysis revealed that category fluency performance was positively associated with fasting glucose level. Fasting insulin or HOMA-IR was positively associated with the hippocampal subfield volume in patients (all p<0.05). Moreover, the spatial span index score was associated with the volume of the right presubiculum, subiculum, and right hippocampal tail. In addition, multiple regression analysis found that the interaction effects of insulin × right fimbria or insulin × left fimbria were independent predictors of the MCCB total score. CONCLUSIONS: Our findings suggest that abnormal glucose metabolism and cognitive decline occur in the early stage of SZ. The interaction between abnormal glucose metabolism and hippocampal subfields was associated with cognitive functions in SZ. |
format | Online Article Text |
id | pubmed-10469074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Asociacion Espanola de Psicologia Conductual |
record_format | MEDLINE/PubMed |
spelling | pubmed-104690742023-09-01 Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia Xiu, Meihong Fan, Yong Liu, Qinqin Chen, Song Wu, Fengchun Zhang, Xiangyang Int J Clin Health Psychol Original Article BACKGROUND: Previous studies have indicated that glucose metabolism and altered hippocampal structure and function play a pivotal role in cognitive deficits in schizophrenia (SZ). This study was designed to explore the inter-relationship between glucose metabolism, hippocampal subfield volume, and cognitive function in the antipsychotics-naive first episode (ANFE) SZ patients. METHODS: We chose the fasting insulin, glucose, and insulin resistance (HOMA-IR) index as biomarkers of glucose metabolism. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). The hippocampal subfield volume, glucose metabolism biomarkers, and cognitive function were evaluated in 43 ANFE SZ and 29 healthy controls (HCs). RESULTS: Compared with HCs, SZ patients had higher fasting blood glucose and insulin levels and HOMA-IR (all p < 0.05). Correlation analysis revealed that category fluency performance was positively associated with fasting glucose level. Fasting insulin or HOMA-IR was positively associated with the hippocampal subfield volume in patients (all p<0.05). Moreover, the spatial span index score was associated with the volume of the right presubiculum, subiculum, and right hippocampal tail. In addition, multiple regression analysis found that the interaction effects of insulin × right fimbria or insulin × left fimbria were independent predictors of the MCCB total score. CONCLUSIONS: Our findings suggest that abnormal glucose metabolism and cognitive decline occur in the early stage of SZ. The interaction between abnormal glucose metabolism and hippocampal subfields was associated with cognitive functions in SZ. Asociacion Espanola de Psicologia Conductual 2023 2023-08-23 /pmc/articles/PMC10469074/ /pubmed/37663043 http://dx.doi.org/10.1016/j.ijchp.2023.100402 Text en © 2023 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Xiu, Meihong Fan, Yong Liu, Qinqin Chen, Song Wu, Fengchun Zhang, Xiangyang Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title | Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title_full | Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title_fullStr | Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title_full_unstemmed | Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title_short | Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
title_sort | glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469074/ https://www.ncbi.nlm.nih.gov/pubmed/37663043 http://dx.doi.org/10.1016/j.ijchp.2023.100402 |
work_keys_str_mv | AT xiumeihong glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia AT fanyong glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia AT liuqinqin glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia AT chensong glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia AT wufengchun glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia AT zhangxiangyang glucosemetabolismhippocampalsubfieldsandcognitioninfirstepisodeandnevertreatedschizophrenia |