Cargando…
Pretrained transformer models for predicting the withdrawal of drugs from the market
MOTIVATION: The process of drug discovery is notoriously complex, costing an average of 2.6 billion dollars and taking ∼13 years to bring a new drug to the market. The success rate for new drugs is alarmingly low (around 0.0001%), and severe adverse drug reactions (ADRs) frequently occur, some of wh...
Autores principales: | Mazuz, Eyal, Shtar, Guy, Kutsky, Nir, Rokach, Lior, Shapira, Bracha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469107/ https://www.ncbi.nlm.nih.gov/pubmed/37610328 http://dx.doi.org/10.1093/bioinformatics/btad519 |
Ejemplares similares
-
Molecule generation using transformers and policy gradient reinforcement learning
por: Mazuz, Eyal, et al.
Publicado: (2023) -
A simplified similarity-based approach for drug-drug interaction prediction
por: Shtar, Guy, et al.
Publicado: (2023) -
Predicting drug characteristics using biomedical text embedding
por: Shtar, Guy, et al.
Publicado: (2022) -
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
CDCDB: A large and continuously updated drug combination database
por: Shtar, Guy, et al.
Publicado: (2022)