Cargando…
Exploring microbial diversity in hot springs of Surajkund, India through 16S rRNA analysis and thermozyme characterization from endogenous isolates
Hot springs are a valuable source of biologically significant chemicals due to their high microbial diversity. To investigate the possibilities for industrial uses of these bacteria, researchers collected water and sediment samples from variety of hot springs. Our investigation employed both culture...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469164/ https://www.ncbi.nlm.nih.gov/pubmed/37648773 http://dx.doi.org/10.1038/s41598-023-41515-5 |
Sumario: | Hot springs are a valuable source of biologically significant chemicals due to their high microbial diversity. To investigate the possibilities for industrial uses of these bacteria, researchers collected water and sediment samples from variety of hot springs. Our investigation employed both culture-dependent and culture-independent techniques, including 16S-based marker gene analysis of the microbiota from the hot springs of Surajkund, Jharkhand. In addition, we cultivated thermophilic isolates and screened for their ability to produce amylase, xylanase, and cellulase. After the optimized production of amylase the enzyme was partially purified and characterized using UPLC, DLS-ZP, and TGA. The retention time for the amylase was observed to be around 0.5 min. We confirmed the stability of the amylase at higher temperatures through observation of a steady thermo gravimetric profile at 400 °C. One of the thermophilic isolates obtained from the kund, demonstrated the potential to degrade lignocellulosic agricultural waste. |
---|