Cargando…
Rotating Disk Electrodes beyond the Levich Approximation: Physics-Informed Neural Networks Reveal and Quantify Edge Effects
[Image: see text] Physics-informed neural networks are used to characterize the mass transport to the rotating disk electrode (RDE), the most widely employed hydrodynamic electrode in electroanalysis. The PINN approach was first quantitatively verified via 1D simulations under the Levich approximati...
Autores principales: | Chen, Haotian, Kätelhön, Enno, Compton, Richard G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469374/ https://www.ncbi.nlm.nih.gov/pubmed/37590478 http://dx.doi.org/10.1021/acs.analchem.3c01936 |
Ejemplares similares
-
Predicting Voltammetry Using Physics-Informed Neural
Networks
por: Chen, Haotian, et al.
Publicado: (2022) -
Experimental Voltammetry Analyzed Using Artificial
Intelligence: Thermodynamics and Kinetics of the Dissociation of Acetic
Acid in Aqueous Solution
por: Chen, Haotian, et al.
Publicado: (2022) -
Additively
Manufactured Rotating Disk Electrodes and
Experimental Setup
por: Whittingham, Matthew J., et al.
Publicado: (2022) -
Understanding single enzyme activity via the nano-impact technique
por: Lin, Chuhong, et al.
Publicado: (2017) -
Thickness of the aqueous boundary layer in stirred microtitre plate permeability assays (PAMPA and Caco-2), based on the Levich equation
por: Avdeef, Alex
Publicado: (2022)