Cargando…
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification
Siamese networks, representing a novel class of neural networks, consist of two identical subnetworks sharing weights but receiving different inputs. Here we present a similarity-based pairing method for generating compound pairs to train Siamese neural networks for regression tasks. In comparison w...
Autores principales: | Zhang, Yumeng, Menke, Janosch, He, Jiazhen, Nittinger, Eva, Tyrchan, Christian, Koch, Oliver, Zhao, Hongtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469421/ https://www.ncbi.nlm.nih.gov/pubmed/37649050 http://dx.doi.org/10.1186/s13321-023-00744-6 |
Ejemplares similares
-
Siamese Recurrent Neural Network with a Self-Attention
Mechanism for Bioactivity Prediction
por: Fernández-Llaneza, Daniel, et al.
Publicado: (2021) -
Transformer-based molecular optimization beyond matched molecular pairs
por: He, Jiazhen, et al.
Publicado: (2022) -
Molecular optimization by capturing chemist’s intuition using deep neural networks
por: He, Jiazhen, et al.
Publicado: (2021) -
Analysing Siamese Neural Network Architectures for Computing Name Similarity.
por: Vinden, Nicholas, et al.
Publicado: (2022) -
Implications of
Additivity and Nonadditivity for Machine
Learning and Deep Learning Models in Drug Design
por: Kwapien, Karolina, et al.
Publicado: (2022)