Cargando…
An improved model using convolutional sliding window-attention network for motor imagery EEG classification
INTRODUCTION: The classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient ric...
Autores principales: | Huang, Yuxuan, Zheng, Jianxu, Xu, Binxing, Li, Xuhang, Liu, Yu, Wang, Zijian, Feng, Hua, Cao, Shiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469504/ https://www.ncbi.nlm.nih.gov/pubmed/37662108 http://dx.doi.org/10.3389/fnins.2023.1204385 |
Ejemplares similares
-
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Early-stage fusion of EEG and fNIRS improves classification of motor imagery
por: Li, Yang, et al.
Publicado: (2023)