Cargando…
The effect of image resolution on convolutional neural networks in breast ultrasound
PURPOSE: The objective of this research was to investigate the efficacy of various parameter combinations of Convolutional Neural Networks (CNNs) models, namely MobileNet and DenseNet121, and different input image resolutions (REZs) ranging from 64×64 to 512×512 pixels, for diagnosing breast cancer....
Autores principales: | Tang, Shuzhen, Jing, Chen, Jiang, Yitao, Yang, Keen, Huang, Zhibin, Wu, Huaiyu, Cui, Chen, Shi, Siyuan, Ye, Xiuqin, Tian, Hongtian, Song, Di, Xu, Jinfeng, Dong, Fajin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469557/ https://www.ncbi.nlm.nih.gov/pubmed/37664701 http://dx.doi.org/10.1016/j.heliyon.2023.e19253 |
Ejemplares similares
-
A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images
por: Wu, Huaiyu, et al.
Publicado: (2022) -
Feasibility of using AI to auto-catch responsible frames in ultrasound screening for breast cancer diagnosis
por: Chen, Jing, et al.
Publicado: (2022) -
S-Thyroid Computer-Aided Diagnosis Ultrasound System of Thyroid Nodules: Correlation Between Transverse and Longitudinal Planes
por: Yang, Keen, et al.
Publicado: (2022) -
Artificial intelligence for non-mass breast lesions detection and classification on ultrasound images: a comparative study
por: Li, Guoqiu, et al.
Publicado: (2023) -
Development and validation of a nomogram for discriminating between benign and malignant breast masses by conventional ultrasound and dual-mode elastography: a multicenter study
por: Yang, Keen, et al.
Publicado: (2023)