Cargando…
Local and global convolutional transformer-based motor imagery EEG classification
Transformer, a deep learning model with the self-attention mechanism, combined with the convolution neural network (CNN) has been successfully applied for decoding electroencephalogram (EEG) signals in Motor Imagery (MI) Brain-Computer Interface (BCI). However, the extremely non-linear, nonstationar...
Autores principales: | Zhang, Jiayang, Li, Kang, Yang, Banghua, Han, Xiaofei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469791/ https://www.ncbi.nlm.nih.gov/pubmed/37662099 http://dx.doi.org/10.3389/fnins.2023.1219988 |
Ejemplares similares
-
Temporal-frequency-phase feature classification using 3D-convolutional neural networks for motor imagery and movement
por: Fan, Chengcheng, et al.
Publicado: (2023) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
An improved model using convolutional sliding window-attention network for motor imagery EEG classification
por: Huang, Yuxuan, et al.
Publicado: (2023) -
Coherence based graph convolution network for motor imagery-induced EEG after spinal cord injury
por: Li, Han, et al.
Publicado: (2023) -
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021)