Cargando…

A real-world pharmacovigilance analysis of FDA adverse event reporting system database for upadacitinib

Objective: To mine the adverse drug event (ADE) signals of upadacitinib based on the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database to provide a reference for the safe clinical use of the drug. Methods: The ADE data for upadacitinib from Q1 2004 to Q1 2023 in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yan, Wei, Meihao, Zhang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469920/
https://www.ncbi.nlm.nih.gov/pubmed/37663269
http://dx.doi.org/10.3389/fphar.2023.1200254
Descripción
Sumario:Objective: To mine the adverse drug event (ADE) signals of upadacitinib based on the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database to provide a reference for the safe clinical use of the drug. Methods: The ADE data for upadacitinib from Q1 2004 to Q1 2023 in the FAERS database were retrieved, and data mining was performed using the reporting odds ratio and proportional reporting ratio. Results: A total of 21,213 ADE reports for the primary suspect drug upadacitinib were obtained, involving 444 ADEs. Patients aged ≥60 years (21.48%) and female (70.11%) patients were at a higher risk of ADEs with upadacitinib. After data cleaning, 182 ADE signals from 19 system organ classes (SOCs) were obtained. Six of these SOCs that occurred more frequently and were not mentioned in the drug labeling information included renal and urinary system (1.09%), reproductive and breast diseases (1.14%), ear and labyrinth disorders (0.57%), psychiatric disease (0.57%), blood and lymphatic system disorders (0.57%), and endocrine disorders (0.57%). The top ten most frequent ADE signals reported for upadacitinib were mainly related to: infections and infestations (7), investigations (2), and skin and subcutaneous tissue disorders (1). The top 10 ADEs in signal intensity ranking were lip neoplasm, ureteral neoplasm, eczema herpeticum, vulvar dysplasia, mediastinum neoplasm, eosinopenia, herpes zoster cutaneous disseminated, eye ulcer, acne cystic, and Moraxella infection. The top 10 high-frequency events leading to serious adverse events were urinary tract infection (2.74%), herpes zoster (1.63%), diverticulitis (1.19%), bronchitis (0.68%), nasopharyngitis (0.68%), localised infection (0.66%), nephrolithiasis (0.66%), pulmonary thrombosis (0.66%), blood cholesterol increased (0.55%), and Pneumocystis jirovecii pneumonia (0.53%). Conclusion: Clinicians should be vigilant to upadacitinib-induced events in systems not covered in the drug labeling information and to new and highly signaled ADEs to ensure the safe and effective use of upadacitinib.