Cargando…
Morphometry-based radiomics for predicting therapeutic response in patients with gliomas following radiotherapy
INTRODUCTION: Gliomas are still considered as challenging in oncologic management despite the developments in treatment approaches. The complete elimination of a glioma might not be possible even after a treatment and assessment of therapeutic response is important to determine the future course of...
Autores principales: | Sherminie, Lahanda Purage G., Jayatilake, Mohan L., Hewavithana, Badra, Weerakoon, Bimali S., Vijithananda, Sahan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470056/ https://www.ncbi.nlm.nih.gov/pubmed/37664038 http://dx.doi.org/10.3389/fonc.2023.1139902 |
Ejemplares similares
-
Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2022) -
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2023) -
Radiomics for the Prediction of Epilepsy in Patients With Frontal Glioma
por: Gao, Ankang, et al.
Publicado: (2021) -
Radiomics Nomogram Improves the Prediction of Epilepsy in Patients With Gliomas
por: Jie, Bai, et al.
Publicado: (2022) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023)