Cargando…

Impact of organic chemistry conditions on DNA durability in the context of DNA-encoded library technology

High-power screening (HPS) technologies, such as DNA-encoded library (DEL) technology, could exponentially increase the dimensions of the chemical space accessible for drug discovery. The intrinsic fragile nature of DNA is associated with cumbersome limitations and DNA durability (e.g., depurination...

Descripción completa

Detalles Bibliográficos
Autores principales: Sunkari, Yashoda Krishna, Nguyen, Thu-Lan, Siripuram, Vijay Kumar, Flajolet, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470182/
https://www.ncbi.nlm.nih.gov/pubmed/37664608
http://dx.doi.org/10.1016/j.isci.2023.107573
Descripción
Sumario:High-power screening (HPS) technologies, such as DNA-encoded library (DEL) technology, could exponentially increase the dimensions of the chemical space accessible for drug discovery. The intrinsic fragile nature of DNA is associated with cumbersome limitations and DNA durability (e.g., depurination, loss of phosphate groups, adduct formation) is compromised in numerous organic chemistry conditions that require empirical testing. An atlas of reaction conditions (temperature, pH, solvent/buffer, ligands, oxidizing reagents, catalysts, scavengers in function of time) that have been systematically tested in multiple combinations, indicates precisely limits useful for DEL construction. More importantly, this approach could be used broadly to effectively evaluate DNA-compatibility of any novel on-DNA chemical reaction, and it is compatible with different molecular methodologies. This atlas and the general approach presented, by allowing novel reaction conditions to be performed in presence of DNA, should greatly help in expanding the DEL chemical space as well as any field involving DNA durability.