Cargando…
Machine learning reveals genetic modifiers of the immune microenvironment of cancer
Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest mod...
Autores principales: | Riley-Gillis, Bridget, Tsaih, Shirng-Wern, King, Emily, Wollenhaupt, Sabrina, Reeb, Jonas, Peck, Amy R., Wackman, Kelsey, Lemke, Angela, Rui, Hallgeir, Dezso, Zoltan, Flister, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470213/ https://www.ncbi.nlm.nih.gov/pubmed/37664640 http://dx.doi.org/10.1016/j.isci.2023.107576 |
Ejemplares similares
-
Identification of a Rat Mammary Tumor Risk Locus That Is Syntenic with the Commonly Amplified 8q12.1 and 8q22.1 Regions in Human Breast Cancer Patients
por: Plasterer, Cody, et al.
Publicado: (2019) -
mTORC1 and mTORC2 differentially promote natural killer cell development
por: Yang, Chao, et al.
Publicado: (2018) -
NNAT is a novel mediator of oxidative stress that suppresses ER + breast cancer
por: Plasterer, Cody, et al.
Publicado: (2023) -
A High-Resolution Genetic Map for the Laboratory Rat
por: Littrell, John, et al.
Publicado: (2018) -
The p52 isoform of SHC1 is a key driver of breast cancer initiation
por: Wright, Kevin D., et al.
Publicado: (2019)