Cargando…

An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening

BACKGROUND: Adolescent idiopathic scoliosis (AIS) affects up to 5% of the population. The efficacy of school-aged screening remains controversial since it is uncertain which curvatures will progress following diagnosis and require treatment. Patient demographics, vertebral morphology, skeletal matur...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongfei, Zhang, Teng, Zhang, Changmeng, Shi, Liangyu, Ng, Samuel Yan-Lik, Yan, Ho-Cheong, Yeung, Karen Ching-Man, Wong, Janus Siu-Him, Cheung, Kenneth Man-Chee, Shea, Graham Ka-Hon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470293/
https://www.ncbi.nlm.nih.gov/pubmed/37619449
http://dx.doi.org/10.1016/j.ebiom.2023.104768
_version_ 1785099650248736768
author Wang, Hongfei
Zhang, Teng
Zhang, Changmeng
Shi, Liangyu
Ng, Samuel Yan-Lik
Yan, Ho-Cheong
Yeung, Karen Ching-Man
Wong, Janus Siu-Him
Cheung, Kenneth Man-Chee
Shea, Graham Ka-Hon
author_facet Wang, Hongfei
Zhang, Teng
Zhang, Changmeng
Shi, Liangyu
Ng, Samuel Yan-Lik
Yan, Ho-Cheong
Yeung, Karen Ching-Man
Wong, Janus Siu-Him
Cheung, Kenneth Man-Chee
Shea, Graham Ka-Hon
author_sort Wang, Hongfei
collection PubMed
description BACKGROUND: Adolescent idiopathic scoliosis (AIS) affects up to 5% of the population. The efficacy of school-aged screening remains controversial since it is uncertain which curvatures will progress following diagnosis and require treatment. Patient demographics, vertebral morphology, skeletal maturity, and bone quality represent individual risk factors for progression but have yet to be integrated towards accurate prognostication. The objective of this work was to develop composite machine learning-based prediction model to accurately predict AIS curves at-risk of progression. METHODS: 1870 AIS patients with remaining growth potential were identified. Curve progression was defined by a Cobb angle increase in the major curve of ≥6° between first visit and skeletal maturity in curves that exceeded 25°. Separate prediction modules were developed for i) clinical data, ii) global/regional spine X-rays, and iii) hand X-rays. The hand X-ray module performed automated image classification and segmentation tasks towards estimation of skeletal maturity and bone mineral density. A late fusion strategy integrated these domains towards the prediction of progressive curves at first clinic visit. FINDINGS: Composite model performance was assessed on a validation cohort and achieved an accuracy of 83.2% (79.3–83.6%, 95% confidence interval), sensitivity of 80.9% (78.2–81.9%), specificity of 83.6% (78.8–84.1%) and an AUC of 0.84 (0.81–0.85), outperforming single modality prediction models (AUC 0.65–0.78). INTERPRETATION: The composite prediction model achieved a high degree of accuracy. Upon incorporation into school-aged screening programs, patients at-risk of progression may be prioritized to receive urgent specialist attention, more frequent follow-up, and pre-emptive treatment. FUNDING: Funding from The Society for the Relief of Disabled Children was awarded to GKHS.
format Online
Article
Text
id pubmed-10470293
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104702932023-09-01 An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening Wang, Hongfei Zhang, Teng Zhang, Changmeng Shi, Liangyu Ng, Samuel Yan-Lik Yan, Ho-Cheong Yeung, Karen Ching-Man Wong, Janus Siu-Him Cheung, Kenneth Man-Chee Shea, Graham Ka-Hon eBioMedicine Articles BACKGROUND: Adolescent idiopathic scoliosis (AIS) affects up to 5% of the population. The efficacy of school-aged screening remains controversial since it is uncertain which curvatures will progress following diagnosis and require treatment. Patient demographics, vertebral morphology, skeletal maturity, and bone quality represent individual risk factors for progression but have yet to be integrated towards accurate prognostication. The objective of this work was to develop composite machine learning-based prediction model to accurately predict AIS curves at-risk of progression. METHODS: 1870 AIS patients with remaining growth potential were identified. Curve progression was defined by a Cobb angle increase in the major curve of ≥6° between first visit and skeletal maturity in curves that exceeded 25°. Separate prediction modules were developed for i) clinical data, ii) global/regional spine X-rays, and iii) hand X-rays. The hand X-ray module performed automated image classification and segmentation tasks towards estimation of skeletal maturity and bone mineral density. A late fusion strategy integrated these domains towards the prediction of progressive curves at first clinic visit. FINDINGS: Composite model performance was assessed on a validation cohort and achieved an accuracy of 83.2% (79.3–83.6%, 95% confidence interval), sensitivity of 80.9% (78.2–81.9%), specificity of 83.6% (78.8–84.1%) and an AUC of 0.84 (0.81–0.85), outperforming single modality prediction models (AUC 0.65–0.78). INTERPRETATION: The composite prediction model achieved a high degree of accuracy. Upon incorporation into school-aged screening programs, patients at-risk of progression may be prioritized to receive urgent specialist attention, more frequent follow-up, and pre-emptive treatment. FUNDING: Funding from The Society for the Relief of Disabled Children was awarded to GKHS. Elsevier 2023-08-22 /pmc/articles/PMC10470293/ /pubmed/37619449 http://dx.doi.org/10.1016/j.ebiom.2023.104768 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Wang, Hongfei
Zhang, Teng
Zhang, Changmeng
Shi, Liangyu
Ng, Samuel Yan-Lik
Yan, Ho-Cheong
Yeung, Karen Ching-Man
Wong, Janus Siu-Him
Cheung, Kenneth Man-Chee
Shea, Graham Ka-Hon
An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title_full An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title_fullStr An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title_full_unstemmed An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title_short An intelligent composite model incorporating global / regional X-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
title_sort intelligent composite model incorporating global / regional x-rays and clinical parameters to predict progressive adolescent idiopathic scoliosis curvatures and facilitate population screening
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470293/
https://www.ncbi.nlm.nih.gov/pubmed/37619449
http://dx.doi.org/10.1016/j.ebiom.2023.104768
work_keys_str_mv AT wanghongfei anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT zhangteng anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT zhangchangmeng anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT shiliangyu anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT ngsamuelyanlik anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT yanhocheong anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT yeungkarenchingman anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT wongjanussiuhim anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT cheungkennethmanchee anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT sheagrahamkahon anintelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT wanghongfei intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT zhangteng intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT zhangchangmeng intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT shiliangyu intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT ngsamuelyanlik intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT yanhocheong intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT yeungkarenchingman intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT wongjanussiuhim intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT cheungkennethmanchee intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening
AT sheagrahamkahon intelligentcompositemodelincorporatingglobalregionalxraysandclinicalparameterstopredictprogressiveadolescentidiopathicscoliosiscurvaturesandfacilitatepopulationscreening