Cargando…
DAB2IP suppresses invadopodia formation through destabilizing ALK by interacting with USP10 in breast cancer
Invadopodia, being actin-rich membrane protrusions, play a vital role in tumor cell invasion and metastasis. Our previous studies have revealed some functions of the DOC-2/DAB2 interacting protein (DAB2IP) as a tumor suppressor. Nevertheless, the specific role and mechanism of DAB2IP in invadopodia...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470318/ https://www.ncbi.nlm.nih.gov/pubmed/37664607 http://dx.doi.org/10.1016/j.isci.2023.107606 |
Sumario: | Invadopodia, being actin-rich membrane protrusions, play a vital role in tumor cell invasion and metastasis. Our previous studies have revealed some functions of the DOC-2/DAB2 interacting protein (DAB2IP) as a tumor suppressor. Nevertheless, the specific role and mechanism of DAB2IP in invadopodia formation remain unclear. Here, we find that DAB2IP effectively suppresses invadopodia formation and metastasis in breast cancer, both in vitro and in vivo. Additionally, DAB2IP could downregulate anaplastic lymphoma kinase (ALK), resulting in the inhibition of tyrosine phosphorylation of Cortactin and the prevention of invadopodia formation. DAB2IP competitively antagonizes the interaction between the deubiquitinating enzyme Ubiquitin-specific peptidase 10 (USP10) and ALK, leading to a decrease in the abundance of ALK protein. In summary, DAB2IP impairs the stability of ALK through USP10-dependent deubiquitination, suppressing Cortactin phosphorylation, thereby inhibiting invadopodia formation and metastasis of breast cancer cells. Furthermore, this study suggests a potential therapeutic strategy for breast cancer treatment. |
---|