Cargando…

The synthetic dye malachite green found in food induces cytotoxicity and genotoxicity in four different mammalian cell lines from distinct tissuesw

Malachite green (MG) is a synthetic dye that uses ranges from its application as a tissue dye to that as an antiparasitic in aquaculture. Several studies have reported the presence of this compound in food dyes and in the meat of fish raised in captivity for human consumption, suggesting risks both...

Descripción completa

Detalles Bibliográficos
Autores principales: de Almada Vilhena, Andryo O, Lima, Karina M M, de Azevedo, Luana F C, Rissino, Jorge D, de Souza, Augusto C P, Nagamachi, Cleusa Y, Pieczarka, Julio C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470350/
https://www.ncbi.nlm.nih.gov/pubmed/37663817
http://dx.doi.org/10.1093/toxres/tfad059
Descripción
Sumario:Malachite green (MG) is a synthetic dye that uses ranges from its application as a tissue dye to that as an antiparasitic in aquaculture. Several studies have reported the presence of this compound in food dyes and in the meat of fish raised in captivity for human consumption, suggesting risks both for the end user and for as those who handle these products because of MG toxic properties described in the literature. Here we evaluated the cytotoxic and genotoxic profiles of MG in four different cell lines (ACP02, L929, MNP01, and MRC-5). Two of these cell lines are stomach cells (normal and cancer lineages) and the potential ingestion of MG makes this a relevant cell type. Cells were treated with MG at concentrations ranging from 0.1 μM to 100 μM, and tested by MTT assay, a differential apoptosis/necrosis assay (EB/OA), the micronucleus test (MN), and the comet assay. MG exhibits dose-dependent cytotoxicity toward all of the tested cell types; higher concentrations of MG cause cell necrosis, while lower concentrations induce apoptosis. MG has a genotoxic profile increasing the rates of micronuclei, nucleoplasmic bridges, nuclear buds, and DNA fragmentation; L929 and MRC-5 showed more sensibility than ACP02 and MNP01.