Cargando…
Towards best practice of interpreting deep learning models for EEG-based brain computer interfaces
INTRODUCTION: As deep learning has achieved state-of-the-art performance for many tasks of EEG-based BCI, many efforts have been made in recent years trying to understand what have been learned by the models. This is commonly done by generating a heatmap indicating to which extent each pixel of the...
Autores principales: | Cui, Jian, Yuan, Liqiang, Wang, Zhaoxiang, Li, Ruilin, Jiang, Tianzi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470463/ https://www.ncbi.nlm.nih.gov/pubmed/37663037 http://dx.doi.org/10.3389/fncom.2023.1232925 |
Ejemplares similares
-
Status of deep learning for EEG-based brain–computer interface applications
por: Hossain, Khondoker Murad, et al.
Publicado: (2023) -
Dual attentive fusion for EEG-based brain-computer interfaces
por: Du, Yuanhua, et al.
Publicado: (2022) -
A Dry EEG-System for Scientific Research and Brain–Computer Interfaces
por: Zander, Thorsten Oliver, et al.
Publicado: (2011) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Spike-Representation of EEG Signals for Performance Enhancement of Brain-Computer Interfaces
por: Singanamalla, Sai Kalyan Ranga, et al.
Publicado: (2022)