Cargando…
Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. T...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470730/ https://www.ncbi.nlm.nih.gov/pubmed/37350592 http://dx.doi.org/10.1128/mbio.00340-23 |
_version_ | 1785099745705852928 |
---|---|
author | Sharma, Ritu Hartman, Travis E. Beites, Tiago Kim, Jee-Hyun Eoh, Hyungjin Engelhart, Curtis A. Zhu, Linnan Wilson, Daniel J. Aldrich, Courtney C. Ehrt, Sabine Rhee, Kyu Young Schnappinger, Dirk |
author_facet | Sharma, Ritu Hartman, Travis E. Beites, Tiago Kim, Jee-Hyun Eoh, Hyungjin Engelhart, Curtis A. Zhu, Linnan Wilson, Daniel J. Aldrich, Courtney C. Ehrt, Sabine Rhee, Kyu Young Schnappinger, Dirk |
author_sort | Sharma, Ritu |
collection | PubMed |
description | Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. The biological basis for the essentiality of NAD(P) in most settings, however, remains experimentally unexplained. Here, we report that inactivation of the terminal enzyme of NAD synthesis, NAD synthetase (NadE), elicits markedly different metabolic and microbiologic effects than those of the terminal enzyme of NADP biosynthesis, NAD kinase (PpnK), in Mycobacterium tuberculosis (Mtb). Inactivation of NadE led to parallel reductions of both NAD and NADP pools and Mtb viability, while inactivation of PpnK selectively depleted NADP pools but only arrested growth. Inactivation of each enzyme was accompanied by metabolic changes that were specific for the affected enzyme and associated microbiological phenotype. Bacteriostatic levels of NAD depletion caused a compensatory remodeling of NAD-dependent metabolic pathways in the absence of an impact on NADH/NAD ratios, while bactericidal levels of NAD depletion resulted in a disruption of NADH/NAD ratios and inhibition of oxygen respiration. These findings reveal a previously unrecognized physiologic specificity associated with the essentiality of two evolutionarily ubiquitous cofactors. IMPORTANCE: The current course for cure of Mycobacterium tuberculosis (Mtb)—the etiologic agent of tuberculosis (TB)—infections is lengthy and requires multiple antibiotics. The development of shorter, simpler treatment regimens is, therefore, critical to the goal of eradicating TB. NadE, an enzyme required for the synthesis of the ubiquitous cofactor NAD, is essential for survival of Mtb and regarded as a promising drug target. However, the basis of this essentiality was not clear due to its role in the synthesis of both NAD and NADP. Here, we resolve this ambiguity through a combination of gene silencing and metabolomics. We specifically show that NADP deficiency is bacteriostatic, while NAD deficiency is bactericidal due to its role in Mtb’s respiratory capacity. These results argue for a prioritization of NAD biosynthesis inhibitors in anti-TB drug development. |
format | Online Article Text |
id | pubmed-10470730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-104707302023-09-01 Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis Sharma, Ritu Hartman, Travis E. Beites, Tiago Kim, Jee-Hyun Eoh, Hyungjin Engelhart, Curtis A. Zhu, Linnan Wilson, Daniel J. Aldrich, Courtney C. Ehrt, Sabine Rhee, Kyu Young Schnappinger, Dirk mBio Research Article Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. The biological basis for the essentiality of NAD(P) in most settings, however, remains experimentally unexplained. Here, we report that inactivation of the terminal enzyme of NAD synthesis, NAD synthetase (NadE), elicits markedly different metabolic and microbiologic effects than those of the terminal enzyme of NADP biosynthesis, NAD kinase (PpnK), in Mycobacterium tuberculosis (Mtb). Inactivation of NadE led to parallel reductions of both NAD and NADP pools and Mtb viability, while inactivation of PpnK selectively depleted NADP pools but only arrested growth. Inactivation of each enzyme was accompanied by metabolic changes that were specific for the affected enzyme and associated microbiological phenotype. Bacteriostatic levels of NAD depletion caused a compensatory remodeling of NAD-dependent metabolic pathways in the absence of an impact on NADH/NAD ratios, while bactericidal levels of NAD depletion resulted in a disruption of NADH/NAD ratios and inhibition of oxygen respiration. These findings reveal a previously unrecognized physiologic specificity associated with the essentiality of two evolutionarily ubiquitous cofactors. IMPORTANCE: The current course for cure of Mycobacterium tuberculosis (Mtb)—the etiologic agent of tuberculosis (TB)—infections is lengthy and requires multiple antibiotics. The development of shorter, simpler treatment regimens is, therefore, critical to the goal of eradicating TB. NadE, an enzyme required for the synthesis of the ubiquitous cofactor NAD, is essential for survival of Mtb and regarded as a promising drug target. However, the basis of this essentiality was not clear due to its role in the synthesis of both NAD and NADP. Here, we resolve this ambiguity through a combination of gene silencing and metabolomics. We specifically show that NADP deficiency is bacteriostatic, while NAD deficiency is bactericidal due to its role in Mtb’s respiratory capacity. These results argue for a prioritization of NAD biosynthesis inhibitors in anti-TB drug development. American Society for Microbiology 2023-06-23 /pmc/articles/PMC10470730/ /pubmed/37350592 http://dx.doi.org/10.1128/mbio.00340-23 Text en Copyright © 2023 Sharma et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Sharma, Ritu Hartman, Travis E. Beites, Tiago Kim, Jee-Hyun Eoh, Hyungjin Engelhart, Curtis A. Zhu, Linnan Wilson, Daniel J. Aldrich, Courtney C. Ehrt, Sabine Rhee, Kyu Young Schnappinger, Dirk Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title | Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title_full | Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title_fullStr | Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title_full_unstemmed | Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title_short | Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis |
title_sort | metabolically distinct roles of nad synthetase and nad kinase define the essentiality of nad and nadp in mycobacterium tuberculosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470730/ https://www.ncbi.nlm.nih.gov/pubmed/37350592 http://dx.doi.org/10.1128/mbio.00340-23 |
work_keys_str_mv | AT sharmaritu metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT hartmantravise metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT beitestiago metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT kimjeehyun metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT eohhyungjin metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT engelhartcurtisa metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT zhulinnan metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT wilsondanielj metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT aldrichcourtneyc metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT ehrtsabine metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT rheekyuyoung metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis AT schnappingerdirk metabolicallydistinctrolesofnadsynthetaseandnadkinasedefinetheessentialityofnadandnadpinmycobacteriumtuberculosis |