Cargando…
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules
OBJECTIVE: To develop and validate the model for predicting benign and malignant ground-glass nodules (GGNs) based on the whole-lung baseline CT features deriving from deep learning and radiomics. METHODS: This retrospective study included 385 GGNs from 3 hospitals, confirmed by pathology. We used 2...
Autores principales: | Huang, Wenjun, Deng, Heng, Li, Zhaobin, Xiong, Zhanda, Zhou, Taohu, Ge, Yanming, Zhang, Jing, Jing, Wenbin, Geng, Yayuan, Wang, Xiang, Tu, Wenting, Dong, Peng, Liu, Shiyuan, Fan, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470826/ https://www.ncbi.nlm.nih.gov/pubmed/37664069 http://dx.doi.org/10.3389/fonc.2023.1255007 |
Ejemplares similares
-
Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules
Using Computed Tomography Radiomics Parameters
por: liang, Ling, et al.
Publicado: (2022) -
The Growth Trend Predictions in Pulmonary Ground Glass Nodules Based on Radiomic CT Features
por: Gao, Chen, et al.
Publicado: (2020) -
Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction
por: Sun, Yingli, et al.
Publicado: (2020) -
Pulmonary Benign Ground-Glass Nodules: CT Features and Pathological Findings
por: Li, Wang-Jia, et al.
Publicado: (2021) -
Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics
por: Wang, Xiang, et al.
Publicado: (2020)