Cargando…

Research on the bearing behavior of single pile in self-weight collapsible loess areas

The negative skin frictional caused by loess collapse will decrease the bearing capacity of single pile, which is essential to the design of pile foundations in loess areas. In this study, a method for estimating the subsidence of soil layer at any depth is firstly proposed based on the total self-w...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Denghui, Zhao, Kuanyao, Ma, Baohong, Han, Zhiping, Fan, Jifei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470878/
https://www.ncbi.nlm.nih.gov/pubmed/37651427
http://dx.doi.org/10.1371/journal.pone.0290878
Descripción
Sumario:The negative skin frictional caused by loess collapse will decrease the bearing capacity of single pile, which is essential to the design of pile foundations in loess areas. In this study, a method for estimating the subsidence of soil layer at any depth is firstly proposed based on the total self-weight collapse value. Secondly, a new load transfer constitutive model for pile-soil interface is developed, which considers the nonlinear stress-strain relationship and the ultimate shear strength of soil. Then, a load transfer calculation model for pile foundation is established, which can calculate the pile axial force, the pile skin frictional, neutral point position and the settlement of a single pile. The calculation results are compared with the test data that obtained from a pile foundation on-site immersion test and the effectiveness of the calculation method is verified well. This calculation method may be useful for designing pile foundations in collapsible loess regions.