Cargando…
Efficient sampling-based Bayesian Active Learning for synaptic characterization
Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires perf...
Autores principales: | Gontier, Camille, Surace, Simone Carlo, Delvendahl, Igor, Müller, Martin, Pfister, Jean-Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470935/ https://www.ncbi.nlm.nih.gov/pubmed/37603559 http://dx.doi.org/10.1371/journal.pcbi.1011342 |
Ejemplares similares
-
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
por: Kutschireiter, Anna, et al.
Publicado: (2017) -
Publisher Correction: Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
por: Kutschireiter, Anna, et al.
Publicado: (2017) -
Learning as filtering: Implications for spike-based plasticity
por: Jegminat, Jannes, et al.
Publicado: (2022) -
Identifiability of a Binomial Synapse
por: Gontier, Camille, et al.
Publicado: (2020) -
A Statistical Model for In Vivo Neuronal Dynamics
por: Surace, Simone Carlo, et al.
Publicado: (2015)