Cargando…
Predicting mortality risk after a fall in older adults using health care spending patterns: a population-based cohort study
OBJECTIVE: To develop a prognostic model of 1-year mortality for individuals aged 65+ presenting at the emergency department (ED) with a fall based on health care spending patterns to guide clinical decision-making. DESIGN: Population-based cohort study (n = 35,997) included with a fall in 2013 and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471203/ https://www.ncbi.nlm.nih.gov/pubmed/37651750 http://dx.doi.org/10.1093/ageing/afad159 |
Sumario: | OBJECTIVE: To develop a prognostic model of 1-year mortality for individuals aged 65+ presenting at the emergency department (ED) with a fall based on health care spending patterns to guide clinical decision-making. DESIGN: Population-based cohort study (n = 35,997) included with a fall in 2013 and followed 1 year. METHODS: Health care spending indicators (dynamical indicators of resilience, DIORs) 2 years before admission were evaluated as potential predictors, along with age, sex and other clinical and sociodemographic covariates. Multivariable logistic regression models were developed and internally validated (10-fold cross-validation). Performance was assessed via discrimination (area under the receiver operating characteristic curve, AUC), Brier scores, calibration and decision curve analysis. RESULTS: The AUC of age and sex for mortality was 72.5% [95% confidence interval 71.8 to 73.2]. The best model included age, sex, number of medications and health care spending DIORs. It exhibited high discrimination (AUC: 81.1 [80.5 to 81.6]), good calibration and potential clinical benefit for various threshold probabilities. Overall, health care spending patterns improved predictive accuracy the most while also exhibiting superior performance and clinical benefit. CONCLUSIONS: Patterns of health care spending have the potential to significantly improve assessments on who is at high risk of dying following admission to the ED with a fall. The proposed methodology can assist in predicting the prognosis of fallers, emphasising the added predictive value of longitudinal health-related information next to clinical and sociodemographic predictors. |
---|