Cargando…

Direct and Indirect Protection with Pediatric Quadrivalent Live-Attenuated Influenza Vaccination in Europe Estimated by a Dynamic Transmission Model

Objectives: To estimate the public health impact of annual vaccination of children with a quadrivalent live-attenuated influenza vaccine (QLAIV) across Europe. Methods: A deterministic, age-structured, dynamic model was used to simulate influenza transmission across 14 European countries, comparing...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerlier, Laetitia, Hackett, Judith, Lawson, Richard, Dos Santos Mendes, Sofia, Weil-Olivier, Catherine, Schwehm, Markus, Eichner, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Columbia Data Analytics, LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471422/
https://www.ncbi.nlm.nih.gov/pubmed/37664688
http://dx.doi.org/10.36469/9801
Descripción
Sumario:Objectives: To estimate the public health impact of annual vaccination of children with a quadrivalent live-attenuated influenza vaccine (QLAIV) across Europe. Methods: A deterministic, age-structured, dynamic model was used to simulate influenza transmission across 14 European countries, comparing current vaccination coverage using a quadrivalent inactivated vaccine (QIV) to a scenario whereby vaccination coverage was extended to 50% of 2–17 year-old children, using QLAIV. Differential equations described demographic changes, exposure to infectious individuals, recovery and immunity dynamics. For each country, the basic reproduction number (R0) was calibrated to published influenza incidence statistics. Assumed vaccine efficacy for children was 80% (QLAIV) and 59% (QIV). Symptomatic cases cumulated over 10 years were calculated per 100 000 person-years. One-way sensitivity analyses were conducted on QLAIV efficacy in 7–17 year-olds (59% instead of 80%), durations of natural (±3 years; base case: 6, 12 years for influenza A, B respectively) and QLAIV vaccine-induced immunity (100% immunity loss after 1 season; base case: 30%), and R0 (+/-10% around all-year average value). Results: Across countries, annual QLAIV vaccination additionally prevents 1366–3604 symptomatic cases per 100 000 population (average 2495 /100 000, ie, a reduction of 47.6% of the cases which occur in the reference scenario with QIV vaccination only). Among children (2–17 years), QLAIV prevents 551–1555 cases per 100 000 population (average 990 /100 000, ie, 67.2% of current cases). Among adults, QLAIV indirectly prevents 726-2047 cases per 100 000 population (average 1466 /100 000, ie, 40.0% of current cases). The most impactful drivers of total protection were duration of natural immunity against influenza A, R0 and QLAIV immunity duration and efficacy. In all evaluated scenarios, there was a large direct and even larger indirect protection compared with the reference scenario. Conclusions: The model highlights direct and indirect protection benefits when vaccinating healthy children with QLAIV in Europe, across a range of demographic structures, contact patterns and vaccination coverage rates.