Cargando…
Cost Effectiveness of Different Platelet Preparation, Storage, Selection and Dosing Methods in Platelet Transfusion: A Systematic Review
BACKGROUND AND OBJECTIVE: Evidence-based guidelines on platelet transfusion therapy assist clinicians to optimize patient care, but currently do not take into account costs associated with different methods used during the preparation, storage, selection and dosing of platelets for transfusion. This...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471540/ https://www.ncbi.nlm.nih.gov/pubmed/37365482 http://dx.doi.org/10.1007/s41669-023-00427-w |
Sumario: | BACKGROUND AND OBJECTIVE: Evidence-based guidelines on platelet transfusion therapy assist clinicians to optimize patient care, but currently do not take into account costs associated with different methods used during the preparation, storage, selection and dosing of platelets for transfusion. This systematic review aimed to summarize the available literature regarding the cost effectiveness (CE) of these methods. METHODS: Eight databases and registries, as well as 58 grey literature sources, were searched up to 29 October 2021 for full economic evaluations comparing the CE of methods for preparation, storage, selection and dosing of allogeneic platelets intended for transfusion in adults. Incremental CE ratios, expressed as standardized cost (in 2022 EUR) per quality-adjusted life-year (QALY) or per health outcome, were synthesized narratively. Studies were critically appraised using the Philips checklist. RESULTS: Fifteen full economic evaluations were identified. Eight investigated the costs and health consequences (transfusion-related events, bacterial and viral infections or illnesses) of pathogen reduction. The estimated incremental cost per QALY varied widely from EUR 259,614 to EUR 36,688,323. For other methods, such as pathogen testing/culturing, use of apheresis instead of whole blood-derived platelets, and storage in platelet additive solution, evidence was sparse. Overall, the quality and applicability of the included studies was limited. CONCLUSIONS: Our findings are of interest to decision makers who consider implementing pathogen reduction. For other preparation, storage, selection and dosing methods in platelet transfusion, CE remains unclear due to insufficient and outdated evaluations. Future high-quality research is needed to expand the evidence base and increase our confidence in the findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41669-023-00427-w. |
---|