Cargando…

Zinc–Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation

Zinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Alghamdi, Norah S., Rana, Masud, Peng, Xiyue, Huang, Yongxin, Lee, Jaeho, Hou, Jingwei, Gentle, Ian R., Wang, Lianzhou, Luo, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471567/
https://www.ncbi.nlm.nih.gov/pubmed/37650939
http://dx.doi.org/10.1007/s40820-023-01174-7
Descripción
Sumario:Zinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs. [Image: see text]