Cargando…
Enhancing the accuracies by performing pooling decisions adjacent to the output layer
Learning classification tasks of [Formula: see text] inputs typically consist of [Formula: see text] ) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly e...
Autores principales: | Meir, Yuval, Tzach, Yarden, Gross, Ronit D., Tevet, Ofek, Vardi, Roni, Kanter, Ido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471572/ https://www.ncbi.nlm.nih.gov/pubmed/37652973 http://dx.doi.org/10.1038/s41598-023-40566-y |
Ejemplares similares
-
Efficient shallow learning as an alternative to deep learning
por: Meir, Yuval, et al.
Publicado: (2023) -
Learning on tree architectures outperforms a convolutional feedforward network
por: Meir, Yuval, et al.
Publicado: (2023) -
Publisher Correction: Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Brain inspired neuronal silencing mechanism to enable reliable sequence identification
por: Hodassman, Shiri, et al.
Publicado: (2022)