Cargando…
Artificial intelligence in ovarian cancer histopathology: a systematic review
This study evaluates the quality of published research using artificial intelligence (AI) for ovarian cancer diagnosis or prognosis using histopathology data. A systematic search of PubMed, Scopus, Web of Science, Cochrane CENTRAL, and WHO-ICTRP was conducted up to May 19, 2023. Inclusion criteria r...
Autores principales: | Breen, Jack, Allen, Katie, Zucker, Kieran, Adusumilli, Pratik, Scarsbrook, Andrew, Hall, Geoff, Orsi, Nicolas M., Ravikumar, Nishant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471607/ https://www.ncbi.nlm.nih.gov/pubmed/37653025 http://dx.doi.org/10.1038/s41698-023-00432-6 |
Ejemplares similares
-
Radiomics in the evaluation of ovarian masses — a systematic review
por: Adusumilli, Pratik, et al.
Publicado: (2023) -
Swarm learning for decentralized artificial intelligence in cancer histopathology
por: Saldanha, Oliver Lester, et al.
Publicado: (2022) -
Recent Applications of Artificial Intelligence from Histopathologic Image-Based Prediction of Microsatellite Instability in Solid Cancers: A Systematic Review
por: Alam, Mohammad Rizwan, et al.
Publicado: (2022) -
When blockchain meets artificial intelligence: An application to cancer histopathology
por: Hong, Runyu, et al.
Publicado: (2022) -
Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma—a systematic review
por: Fatania, Kavi, et al.
Publicado: (2022)