Cargando…
Coronary heart disease prediction method fusing domain-adaptive transfer learning with graph convolutional networks (GCN)
Graph convolutional networks (GCNs) have achieved impressive results in many medical scenarios involving graph node classification tasks. However, there are difficulties in transfer learning for graph representation learning and graph network models. Most GNNs work only in a single domain and cannot...
Autores principales: | Lin, Huizhong, Chen, Kaizhi, Xue, Yutao, Zhong, Shangping, Chen, Lianglong, Ye, Mingfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471677/ https://www.ncbi.nlm.nih.gov/pubmed/37652917 http://dx.doi.org/10.1038/s41598-023-33124-z |
Ejemplares similares
-
All-Cause Death Prediction Method for CHD Based on Graph Convolutional Networks
por: Xue, Yutao, et al.
Publicado: (2022) -
Acute coronary syndrome risk prediction based on gradient boosted tree feature selection and recursive feature elimination: A dataset-specific modeling study
por: Lin, Huizhong, et al.
Publicado: (2022) -
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics
por: Song, Qianqian, et al.
Publicado: (2021) -
SAST-GCN: Segmentation Adaptive Spatial Temporal-Graph Convolutional Network for P3-Based Video Target Detection
por: Lu, Runnan, et al.
Publicado: (2022) -
GCN-IA: User Profile Based on Graph Convolutional Network with Implicit Association Labels
por: Wen, Jie, et al.
Publicado: (2020)