Cargando…
D’Atri spaces and the total scalar curvature of hemispheres, tubes and cylinders
Csikós and Horváth proved in J Geom Anal 28(4): 3458-3476, (2018) that if a connected Riemannian manifold of dimension at least 4 is harmonic, then the total scalar curvatures of tubes of small radius about an arbitrary regular curve depend only on the length of the curve and the radius of the tube,...
Autores principales: | Csikós, Balázs, Elnashar, Amr, Horváth, Márton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471713/ https://www.ncbi.nlm.nih.gov/pubmed/37663240 http://dx.doi.org/10.1007/s13163-022-00444-z |
Ejemplares similares
-
Topics in geometry: in memory of Joseph D'Atri
por: Gindikin, Simon
Publicado: (1996) -
Mean value operators, commuting differential operators and D'Atri spaces
por: Günter, P, et al.
Publicado: (1997) -
Hypersurfaces with constant scalar curvature in a hyperbolic space form
por: Ximin, L
Publicado: (2001) -
Volume growth and positive scalar curvature
por: Gong, G, et al.
Publicado: (1999) -
ECG Classification Based on Wasserstein Scalar Curvature
por: Sun, Fupeng, et al.
Publicado: (2022)