Cargando…
Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model
Synthetic electronic health records (EHRs) that are both realistic and privacy-preserving offer alternatives to real EHRs for machine learning (ML) and statistical analysis. However, generating high-fidelity EHR data in its original, high-dimensional form poses challenges for existing methods. We pr...
Autores principales: | Theodorou, Brandon, Xiao, Cao, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471716/ https://www.ncbi.nlm.nih.gov/pubmed/37652934 http://dx.doi.org/10.1038/s41467-023-41093-0 |
Ejemplares similares
-
Synthesize Extremely High-dimensional Longitudinal Electronic Health Records via Hierarchical Autoregressive Language Model
por: Theodorou, Brandon, et al.
Publicado: (2023) -
Author Correction: Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model
por: Theodorou, Brandon, et al.
Publicado: (2023) -
Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review
por: Xiao, Cao, et al.
Publicado: (2018) -
Bayesian hierarchical vector autoregressive models for patient-level predictive modeling
por: Lu, Feihan, et al.
Publicado: (2018) -
Autoregressive Affective Language Forecasting: A Self-Supervised Task
por: Matero, Matthew, et al.
Publicado: (2020)