Cargando…
Association and Prediction Utilizing Craniocaudal and Mediolateral Oblique View Digital Mammography and Long-Term Breast Cancer Risk
Mammographic percentage of volumetric density is an important risk factor for breast cancer. Epidemiology studies historically used film images often limited to craniocaudal (CC) views to estimate area-based breast density. More recent studies using digital mammography images typically use the avera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472097/ https://www.ncbi.nlm.nih.gov/pubmed/37428020 http://dx.doi.org/10.1158/1940-6207.CAPR-22-0499 |
Sumario: | Mammographic percentage of volumetric density is an important risk factor for breast cancer. Epidemiology studies historically used film images often limited to craniocaudal (CC) views to estimate area-based breast density. More recent studies using digital mammography images typically use the averaged density between craniocaudal (CC) and mediolateral oblique (MLO) view mammography for 5- and 10-year risk prediction. The performance in using either and both mammogram views has not been well-investigated. We use 3,804 full-field digital mammograms from the Joanne Knight Breast Health Cohort (294 incident cases and 657 controls), to quantity the association between volumetric percentage of density extracted from either and both mammography views and to assess the 5 and 10-year breast cancer risk prediction performance. Our results show that the association between percent volumetric density from CC, MLO, and the average between the two, retain essentially the same association with breast cancer risk. The 5- and 10-year risk prediction also shows similar prediction accuracy. Thus, one view is sufficient to assess association and predict future risk of breast cancer over a 5 or 10-year interval. PREVENTION RELEVANCE: Expanding use of digital mammography and repeated screening provides opportunities for risk assessment. To use these images for risk estimates and guide risk management in real time requires efficient processing. Evaluating the contribution of different views to prediction performance can guide future applications for risk management in routine care. |
---|