Cargando…
Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration
The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472212/ https://www.ncbi.nlm.nih.gov/pubmed/37664206 http://dx.doi.org/10.1039/d3ra04498j |
_version_ | 1785100027467661312 |
---|---|
author | Du, Qiaolin Sun, Jian Zhou, Yanyan Yu, Yadong Kong, Weijing Chen, Chaoqun Zhou, Yifeng Zhao, Ke Shao, Changyu Gu, Xinhua |
author_facet | Du, Qiaolin Sun, Jian Zhou, Yanyan Yu, Yadong Kong, Weijing Chen, Chaoqun Zhou, Yifeng Zhao, Ke Shao, Changyu Gu, Xinhua |
author_sort | Du, Qiaolin |
collection | PubMed |
description | The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate–carboxylated chitosan–polyvinyl alcohol (ACP–CCS–PVA) composite membranes are fabricated by freeze–thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS–PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content. |
format | Online Article Text |
id | pubmed-10472212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104722122023-09-02 Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration Du, Qiaolin Sun, Jian Zhou, Yanyan Yu, Yadong Kong, Weijing Chen, Chaoqun Zhou, Yifeng Zhao, Ke Shao, Changyu Gu, Xinhua RSC Adv Chemistry The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate–carboxylated chitosan–polyvinyl alcohol (ACP–CCS–PVA) composite membranes are fabricated by freeze–thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS–PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content. The Royal Society of Chemistry 2023-09-01 /pmc/articles/PMC10472212/ /pubmed/37664206 http://dx.doi.org/10.1039/d3ra04498j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Du, Qiaolin Sun, Jian Zhou, Yanyan Yu, Yadong Kong, Weijing Chen, Chaoqun Zhou, Yifeng Zhao, Ke Shao, Changyu Gu, Xinhua Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title | Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title_full | Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title_fullStr | Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title_full_unstemmed | Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title_short | Fabrication of ACP–CCS–PVA composite membrane for a potential application in guided bone regeneration |
title_sort | fabrication of acp–ccs–pva composite membrane for a potential application in guided bone regeneration |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472212/ https://www.ncbi.nlm.nih.gov/pubmed/37664206 http://dx.doi.org/10.1039/d3ra04498j |
work_keys_str_mv | AT duqiaolin fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT sunjian fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT zhouyanyan fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT yuyadong fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT kongweijing fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT chenchaoqun fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT zhouyifeng fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT zhaoke fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT shaochangyu fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration AT guxinhua fabricationofacpccspvacompositemembraneforapotentialapplicationinguidedboneregeneration |