Cargando…
Predicting sea levels using ML algorithms in selected locations along coastal Malaysia
In consideration of the distinct behavior of machine learning (ML) algorithms, six well-defined ML used were carried out in this study for predicting sea level on a day-to-day basis. Data compiled from 1985 to 2018 was utilized for training and testing the developed models. An assessment of the mult...
Autores principales: | Hazrin, Nur Alyaa, Chong, Kai Lun, Huang, Yuk Feng, Ahmed, Ali Najah, Ng, Jing Lin, Koo, Chai Hoon, Tan, Kok Weng, Sherif, Mohsen, El-shafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472251/ https://www.ncbi.nlm.nih.gov/pubmed/37662729 http://dx.doi.org/10.1016/j.heliyon.2023.e19426 |
Ejemplares similares
-
Streamflow classification by employing various machine learning models for peninsular Malaysia
por: AlDahoul, Nouar, et al.
Publicado: (2023) -
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
por: Hanoon, Marwah Sattar, et al.
Publicado: (2021) -
Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms
por: Essam, Yusuf, et al.
Publicado: (2022) -
Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
por: Essam, Yusuf, et al.
Publicado: (2022) -
Complex Extreme Sea Levels Prediction Analysis: Karachi Coast Case Study
por: Khan, Faisal Ahmed, et al.
Publicado: (2020)