Cargando…
Indolo[2,3-b]quinoxaline as a Low Reduction Potential and High Stability Anolyte Scaffold for Nonaqueous Redox Flow Batteries
[Image: see text] Redox flow batteries (RFBs) are a promising stationary energy storage technology for leveling power supply from intermittent renewable energy sources with demand. A central objective for the development of practical, scalable RFBs is to identify affordable and high-performance redo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472437/ https://www.ncbi.nlm.nih.gov/pubmed/37585274 http://dx.doi.org/10.1021/jacs.3c05210 |
Sumario: | [Image: see text] Redox flow batteries (RFBs) are a promising stationary energy storage technology for leveling power supply from intermittent renewable energy sources with demand. A central objective for the development of practical, scalable RFBs is to identify affordable and high-performance redox-active molecules as storage materials. Herein, we report the design, synthesis, and evaluation of a new organic scaffold, indolo[2,3-b]quinoxaline, for highly stable, low-reduction potential, and high-solubility anolytes for nonaqueous redox flow batteries (NARFBs). The mixture of 2- and 3-(tert-butyl)-6-(2-methoxyethyl)-6H-indolo[2,3-b]quinoxaline exhibits a low reduction potential (−2.01 V vs Fc/Fc(+)), high solubility (>2.7 M in acetonitrile), and remarkable stability (99.86% capacity retention over 49.5 h (202 cycles) of H-cell cycling). This anolyte was paired with N-(2-(2-methoxyethoxy)-ethyl)phenothiazine (MEEPT) to achieve a 2.3 V all-organic NARFB exhibiting 95.8% capacity retention over 75.1 h (120 cycles) of cycling. |
---|