Cargando…

SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency

Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than seve...

Descripción completa

Detalles Bibliográficos
Autores principales: Takahashi, Saki, Peluso, Michael J, Hakim, Jill, Turcios, Keirstinne, Janson, Owen, Routledge, Isobel, Busch, Michael P, Hoh, Rebecca, Tai, Viva, Kelly, J Daniel, Martin, Jeffrey N, Deeks, Steven G, Henrich, Timothy J, Greenhouse, Bryan, Rodríguez-Barraquer, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472487/
https://www.ncbi.nlm.nih.gov/pubmed/37119030
http://dx.doi.org/10.1093/aje/kwad106
_version_ 1785100085770584064
author Takahashi, Saki
Peluso, Michael J
Hakim, Jill
Turcios, Keirstinne
Janson, Owen
Routledge, Isobel
Busch, Michael P
Hoh, Rebecca
Tai, Viva
Kelly, J Daniel
Martin, Jeffrey N
Deeks, Steven G
Henrich, Timothy J
Greenhouse, Bryan
Rodríguez-Barraquer, Isabel
author_facet Takahashi, Saki
Peluso, Michael J
Hakim, Jill
Turcios, Keirstinne
Janson, Owen
Routledge, Isobel
Busch, Michael P
Hoh, Rebecca
Tai, Viva
Kelly, J Daniel
Martin, Jeffrey N
Deeks, Steven G
Henrich, Timothy J
Greenhouse, Bryan
Rodríguez-Barraquer, Isabel
author_sort Takahashi, Saki
collection PubMed
description Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.
format Online
Article
Text
id pubmed-10472487
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104724872023-09-02 SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency Takahashi, Saki Peluso, Michael J Hakim, Jill Turcios, Keirstinne Janson, Owen Routledge, Isobel Busch, Michael P Hoh, Rebecca Tai, Viva Kelly, J Daniel Martin, Jeffrey N Deeks, Steven G Henrich, Timothy J Greenhouse, Bryan Rodríguez-Barraquer, Isabel Am J Epidemiol Practice of Epidemiology Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics. Oxford University Press 2023-04-29 /pmc/articles/PMC10472487/ /pubmed/37119030 http://dx.doi.org/10.1093/aje/kwad106 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Practice of Epidemiology
Takahashi, Saki
Peluso, Michael J
Hakim, Jill
Turcios, Keirstinne
Janson, Owen
Routledge, Isobel
Busch, Michael P
Hoh, Rebecca
Tai, Viva
Kelly, J Daniel
Martin, Jeffrey N
Deeks, Steven G
Henrich, Timothy J
Greenhouse, Bryan
Rodríguez-Barraquer, Isabel
SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title_full SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title_fullStr SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title_full_unstemmed SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title_short SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
title_sort sars-cov-2 serology across scales: a framework for unbiased estimation of cumulative incidence incorporating antibody kinetics and epidemic recency
topic Practice of Epidemiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472487/
https://www.ncbi.nlm.nih.gov/pubmed/37119030
http://dx.doi.org/10.1093/aje/kwad106
work_keys_str_mv AT takahashisaki sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT pelusomichaelj sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT hakimjill sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT turcioskeirstinne sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT jansonowen sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT routledgeisobel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT buschmichaelp sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT hohrebecca sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT taiviva sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT kellyjdaniel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT martinjeffreyn sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT deekssteveng sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT henrichtimothyj sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT greenhousebryan sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency
AT rodriguezbarraquerisabel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency