Cargando…
SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency
Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than seve...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472487/ https://www.ncbi.nlm.nih.gov/pubmed/37119030 http://dx.doi.org/10.1093/aje/kwad106 |
_version_ | 1785100085770584064 |
---|---|
author | Takahashi, Saki Peluso, Michael J Hakim, Jill Turcios, Keirstinne Janson, Owen Routledge, Isobel Busch, Michael P Hoh, Rebecca Tai, Viva Kelly, J Daniel Martin, Jeffrey N Deeks, Steven G Henrich, Timothy J Greenhouse, Bryan Rodríguez-Barraquer, Isabel |
author_facet | Takahashi, Saki Peluso, Michael J Hakim, Jill Turcios, Keirstinne Janson, Owen Routledge, Isobel Busch, Michael P Hoh, Rebecca Tai, Viva Kelly, J Daniel Martin, Jeffrey N Deeks, Steven G Henrich, Timothy J Greenhouse, Bryan Rodríguez-Barraquer, Isabel |
author_sort | Takahashi, Saki |
collection | PubMed |
description | Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics. |
format | Online Article Text |
id | pubmed-10472487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104724872023-09-02 SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency Takahashi, Saki Peluso, Michael J Hakim, Jill Turcios, Keirstinne Janson, Owen Routledge, Isobel Busch, Michael P Hoh, Rebecca Tai, Viva Kelly, J Daniel Martin, Jeffrey N Deeks, Steven G Henrich, Timothy J Greenhouse, Bryan Rodríguez-Barraquer, Isabel Am J Epidemiol Practice of Epidemiology Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics. Oxford University Press 2023-04-29 /pmc/articles/PMC10472487/ /pubmed/37119030 http://dx.doi.org/10.1093/aje/kwad106 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Practice of Epidemiology Takahashi, Saki Peluso, Michael J Hakim, Jill Turcios, Keirstinne Janson, Owen Routledge, Isobel Busch, Michael P Hoh, Rebecca Tai, Viva Kelly, J Daniel Martin, Jeffrey N Deeks, Steven G Henrich, Timothy J Greenhouse, Bryan Rodríguez-Barraquer, Isabel SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title | SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title_full | SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title_fullStr | SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title_full_unstemmed | SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title_short | SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency |
title_sort | sars-cov-2 serology across scales: a framework for unbiased estimation of cumulative incidence incorporating antibody kinetics and epidemic recency |
topic | Practice of Epidemiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472487/ https://www.ncbi.nlm.nih.gov/pubmed/37119030 http://dx.doi.org/10.1093/aje/kwad106 |
work_keys_str_mv | AT takahashisaki sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT pelusomichaelj sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT hakimjill sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT turcioskeirstinne sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT jansonowen sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT routledgeisobel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT buschmichaelp sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT hohrebecca sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT taiviva sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT kellyjdaniel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT martinjeffreyn sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT deekssteveng sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT henrichtimothyj sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT greenhousebryan sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency AT rodriguezbarraquerisabel sarscov2serologyacrossscalesaframeworkforunbiasedestimationofcumulativeincidenceincorporatingantibodykineticsandepidemicrecency |