Cargando…
Sex‐related patterns in the electroencephalogram and their relevance in machine learning classifiers
Deep learning is increasingly being proposed for detecting neurological and psychiatric diseases from electroencephalogram (EEG) data but the method is prone to inadvertently incorporate biases from training data and exploit illegitimate patterns. The recent demonstration that deep learning can dete...
Autores principales: | Jochmann, Thomas, Seibel, Marc S., Jochmann, Elisabeth, Khan, Sheraz, Hämäläinen, Matti S., Haueisen, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472918/ https://www.ncbi.nlm.nih.gov/pubmed/37461294 http://dx.doi.org/10.1002/hbm.26417 |
Ejemplares similares
-
Characterisation of Cognitive Load Using Machine Learning Classifiers of Electroencephalogram Data
por: Wang, Qi, et al.
Publicado: (2023) -
Analysis of induced components in electroencephalograms using a multiple correlation method
por: Graichen, Uwe, et al.
Publicado: (2009) -
Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology
por: Heinson, Ashley I., et al.
Publicado: (2017) -
Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection
por: Mendonça, Fábio, et al.
Publicado: (2022) -
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023)