Cargando…
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases
Suffering from various apple leaf diseases, timely preventive measures are necessary to take. Currently, manual disease discrimination has high workloads, while automated disease detection algorithms face the trade-off between detection accuracy and speed. Therefore, an accurate and lightweight mode...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472937/ https://www.ncbi.nlm.nih.gov/pubmed/37662152 http://dx.doi.org/10.3389/fpls.2023.1204569 |
_version_ | 1785100175868428288 |
---|---|
author | Xu, Weishi Wang, Runjie |
author_facet | Xu, Weishi Wang, Runjie |
author_sort | Xu, Weishi |
collection | PubMed |
description | Suffering from various apple leaf diseases, timely preventive measures are necessary to take. Currently, manual disease discrimination has high workloads, while automated disease detection algorithms face the trade-off between detection accuracy and speed. Therefore, an accurate and lightweight model for apple leaf disease detection based on YOLO-V5s (ALAD-YOLO) is proposed in this paper. An apple leaf disease detection dataset is collected, containing 2,748 images of diseased apple leaves under a complex environment, such as from different shooting angles, during different spans of the day, and under different weather conditions. Moreover, various data augmentation algorithms are applied to improve the model generalization. The model size is compressed by introducing the Mobilenet-V3s basic block, which integrates the coordinate attention (CA) mechanism in the backbone network and replacing the ordinary convolution with group convolution in the Spatial Pyramid Pooling Cross Stage Partial Conv (SPPCSPC) module, depth-wise convolution, and Ghost module in the C3 module in the neck network, while maintaining a high detection accuracy. Experimental results show that ALAD-YOLO balances detection speed and accuracy well, achieving an accuracy of 90.2% (an improvement of 7.9% compared with yolov5s) on the test set and reducing the floating point of operations (FLOPs) to 6.1 G (a decrease of 9.7 G compared with yolov5s). In summary, this paper provides an accurate and efficient detection method for apple leaf disease detection and other related fields. |
format | Online Article Text |
id | pubmed-10472937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104729372023-09-02 ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases Xu, Weishi Wang, Runjie Front Plant Sci Plant Science Suffering from various apple leaf diseases, timely preventive measures are necessary to take. Currently, manual disease discrimination has high workloads, while automated disease detection algorithms face the trade-off between detection accuracy and speed. Therefore, an accurate and lightweight model for apple leaf disease detection based on YOLO-V5s (ALAD-YOLO) is proposed in this paper. An apple leaf disease detection dataset is collected, containing 2,748 images of diseased apple leaves under a complex environment, such as from different shooting angles, during different spans of the day, and under different weather conditions. Moreover, various data augmentation algorithms are applied to improve the model generalization. The model size is compressed by introducing the Mobilenet-V3s basic block, which integrates the coordinate attention (CA) mechanism in the backbone network and replacing the ordinary convolution with group convolution in the Spatial Pyramid Pooling Cross Stage Partial Conv (SPPCSPC) module, depth-wise convolution, and Ghost module in the C3 module in the neck network, while maintaining a high detection accuracy. Experimental results show that ALAD-YOLO balances detection speed and accuracy well, achieving an accuracy of 90.2% (an improvement of 7.9% compared with yolov5s) on the test set and reducing the floating point of operations (FLOPs) to 6.1 G (a decrease of 9.7 G compared with yolov5s). In summary, this paper provides an accurate and efficient detection method for apple leaf disease detection and other related fields. Frontiers Media S.A. 2023-08-17 /pmc/articles/PMC10472937/ /pubmed/37662152 http://dx.doi.org/10.3389/fpls.2023.1204569 Text en Copyright © 2023 Xu and Wang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Xu, Weishi Wang, Runjie ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title | ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title_full | ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title_fullStr | ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title_full_unstemmed | ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title_short | ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases |
title_sort | alad-yolo:an lightweight and accurate detector for apple leaf diseases |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472937/ https://www.ncbi.nlm.nih.gov/pubmed/37662152 http://dx.doi.org/10.3389/fpls.2023.1204569 |
work_keys_str_mv | AT xuweishi aladyoloanlightweightandaccuratedetectorforappleleafdiseases AT wangrunjie aladyoloanlightweightandaccuratedetectorforappleleafdiseases |