Cargando…
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases
Suffering from various apple leaf diseases, timely preventive measures are necessary to take. Currently, manual disease discrimination has high workloads, while automated disease detection algorithms face the trade-off between detection accuracy and speed. Therefore, an accurate and lightweight mode...
Autores principales: | Xu, Weishi, Wang, Runjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472937/ https://www.ncbi.nlm.nih.gov/pubmed/37662152 http://dx.doi.org/10.3389/fpls.2023.1204569 |
Ejemplares similares
-
EADD-YOLO: An efficient and accurate disease detector for apple leaf using improved lightweight YOLOv5
por: Zhu, Shisong, et al.
Publicado: (2023) -
MGA-YOLO: A lightweight one-stage network for apple leaf disease detection
por: Wang, Yiwen, et al.
Publicado: (2022) -
MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments
por: Lu, Bibo, et al.
Publicado: (2023) -
Lightweight-Convolutional Neural Network for Apple Leaf Disease Identification
por: Fu, Lili, et al.
Publicado: (2022) -
YOLO-SCL: a lightweight detection model for citrus psyllid based on spatial channel interaction
por: Lyu, Shilei, et al.
Publicado: (2023)