Cargando…
Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration
Novel electrolyte systems are required to further improve the performance and ensure the safety of lithium-ion batteries. Lithium-monochelated borates with trifluoromethylated ligands are used as electrolytes for lithium-ion batteries (LIBs) with a lithium bis(oxalato)borate (LiBOB) additive. The ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472978/ https://www.ncbi.nlm.nih.gov/pubmed/37664197 http://dx.doi.org/10.1039/d3ra02381h |
_version_ | 1785100181482504192 |
---|---|
author | Takahashi, Mikihiro Hesaka, Hayato Tsutsumi, Hiromori Katayama, Yu |
author_facet | Takahashi, Mikihiro Hesaka, Hayato Tsutsumi, Hiromori Katayama, Yu |
author_sort | Takahashi, Mikihiro |
collection | PubMed |
description | Novel electrolyte systems are required to further improve the performance and ensure the safety of lithium-ion batteries. Lithium-monochelated borates with trifluoromethylated ligands are used as electrolytes for lithium-ion batteries (LIBs) with a lithium bis(oxalato)borate (LiBOB) additive. The capacity decay and extremely high resistance after the cycle test at 60 °C are dramatically suppressed by the addition of LiBOB. Half-cell measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) suggested that the reductive decomposition products of the electrolytes at the negative electrode significantly increased the resistance at the positive electrode, which originated from the crosstalk of the decomposition species formed at the negative electrode. Further analysis confirmed the importance of the LiBOB-derived solid electrolyte interphase (SEI) at the negative electrode, which suppressed the formation of crosstalk species at the negative electrode and effectively suppressed the increase in resistance of the positive electrode. This study provides a reliable and promising approach for designing high-performance electrolytes with lithium borate and emphasizes the importance of considering the reactions occurring at both electrodes to improve battery performance. |
format | Online Article Text |
id | pubmed-10472978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104729782023-09-02 Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration Takahashi, Mikihiro Hesaka, Hayato Tsutsumi, Hiromori Katayama, Yu RSC Adv Chemistry Novel electrolyte systems are required to further improve the performance and ensure the safety of lithium-ion batteries. Lithium-monochelated borates with trifluoromethylated ligands are used as electrolytes for lithium-ion batteries (LIBs) with a lithium bis(oxalato)borate (LiBOB) additive. The capacity decay and extremely high resistance after the cycle test at 60 °C are dramatically suppressed by the addition of LiBOB. Half-cell measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) suggested that the reductive decomposition products of the electrolytes at the negative electrode significantly increased the resistance at the positive electrode, which originated from the crosstalk of the decomposition species formed at the negative electrode. Further analysis confirmed the importance of the LiBOB-derived solid electrolyte interphase (SEI) at the negative electrode, which suppressed the formation of crosstalk species at the negative electrode and effectively suppressed the increase in resistance of the positive electrode. This study provides a reliable and promising approach for designing high-performance electrolytes with lithium borate and emphasizes the importance of considering the reactions occurring at both electrodes to improve battery performance. The Royal Society of Chemistry 2023-09-01 /pmc/articles/PMC10472978/ /pubmed/37664197 http://dx.doi.org/10.1039/d3ra02381h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Takahashi, Mikihiro Hesaka, Hayato Tsutsumi, Hiromori Katayama, Yu Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title | Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title_full | Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title_fullStr | Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title_full_unstemmed | Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title_short | Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
title_sort | impact of libob additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472978/ https://www.ncbi.nlm.nih.gov/pubmed/37664197 http://dx.doi.org/10.1039/d3ra02381h |
work_keys_str_mv | AT takahashimikihiro impactoflibobadditiveoncycleperformancedegradationoflithiummonochelatedborateelectrolytesminimizethecrosstalkderiveddeterioration AT hesakahayato impactoflibobadditiveoncycleperformancedegradationoflithiummonochelatedborateelectrolytesminimizethecrosstalkderiveddeterioration AT tsutsumihiromori impactoflibobadditiveoncycleperformancedegradationoflithiummonochelatedborateelectrolytesminimizethecrosstalkderiveddeterioration AT katayamayu impactoflibobadditiveoncycleperformancedegradationoflithiummonochelatedborateelectrolytesminimizethecrosstalkderiveddeterioration |