Cargando…
The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network
A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distan...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473271/ https://www.ncbi.nlm.nih.gov/pubmed/37781151 http://dx.doi.org/10.1162/netn_a_00300 |
_version_ | 1785100240479584256 |
---|---|
author | Deco, Gustavo Sanz Perl, Yonatan de la Fuente, Laura Sitt, Jacobo D. Yeo, B. T. Thomas Tagliazucchi, Enzo Kringelbach, Morten L. |
author_facet | Deco, Gustavo Sanz Perl, Yonatan de la Fuente, Laura Sitt, Jacobo D. Yeo, B. T. Thomas Tagliazucchi, Enzo Kringelbach, Morten L. |
author_sort | Deco, Gustavo |
collection | PubMed |
description | A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, ‘arrow of time’, in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments. |
format | Online Article Text |
id | pubmed-10473271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104732712023-10-01 The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network Deco, Gustavo Sanz Perl, Yonatan de la Fuente, Laura Sitt, Jacobo D. Yeo, B. T. Thomas Tagliazucchi, Enzo Kringelbach, Morten L. Netw Neurosci Research Article A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, ‘arrow of time’, in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments. MIT Press 2023-10-01 /pmc/articles/PMC10473271/ /pubmed/37781151 http://dx.doi.org/10.1162/netn_a_00300 Text en © 2023 Massachusetts Institute of Technology https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Deco, Gustavo Sanz Perl, Yonatan de la Fuente, Laura Sitt, Jacobo D. Yeo, B. T. Thomas Tagliazucchi, Enzo Kringelbach, Morten L. The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title | The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title_full | The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title_fullStr | The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title_full_unstemmed | The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title_short | The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network |
title_sort | arrow of time of brain signals in cognition: potential intriguing role of parts of the default mode network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473271/ https://www.ncbi.nlm.nih.gov/pubmed/37781151 http://dx.doi.org/10.1162/netn_a_00300 |
work_keys_str_mv | AT decogustavo thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT sanzperlyonatan thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT delafuentelaura thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT sittjacobod thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT yeobtthomas thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT tagliazucchienzo thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT kringelbachmortenl thearrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT decogustavo arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT sanzperlyonatan arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT delafuentelaura arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT sittjacobod arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT yeobtthomas arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT tagliazucchienzo arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork AT kringelbachmortenl arrowoftimeofbrainsignalsincognitionpotentialintriguingroleofpartsofthedefaultmodenetwork |