Cargando…
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses In this paper, we propose an unsupervised MR image harmonization approach, CA...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473284/ https://www.ncbi.nlm.nih.gov/pubmed/34506916 http://dx.doi.org/10.1016/j.neuroimage.2021.118569 |
_version_ | 1785100243080052736 |
---|---|
author | Zuo, Lianrui Dewey, Blake E. Liu, Yihao He, Yufan Newsome, Scott D. Mowry, Ellen M. Resnick, Susan M. Prince, Jerry L. Carass, Aaron |
author_facet | Zuo, Lianrui Dewey, Blake E. Liu, Yihao He, Yufan Newsome, Scott D. Mowry, Ellen M. Resnick, Susan M. Prince, Jerry L. Carass, Aaron |
author_sort | Zuo, Lianrui |
collection | PubMed |
description | In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. |
format | Online Article Text |
id | pubmed-10473284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-104732842023-09-01 Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory Zuo, Lianrui Dewey, Blake E. Liu, Yihao He, Yufan Newsome, Scott D. Mowry, Ellen M. Resnick, Susan M. Prince, Jerry L. Carass, Aaron Neuroimage Article In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. 2021-11 2021-09-08 /pmc/articles/PMC10473284/ /pubmed/34506916 http://dx.doi.org/10.1016/j.neuroimage.2021.118569 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Article Zuo, Lianrui Dewey, Blake E. Liu, Yihao He, Yufan Newsome, Scott D. Mowry, Ellen M. Resnick, Susan M. Prince, Jerry L. Carass, Aaron Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title_full | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title_fullStr | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title_full_unstemmed | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title_short | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
title_sort | unsupervised mr harmonization by learning disentangled representations using information bottleneck theory |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473284/ https://www.ncbi.nlm.nih.gov/pubmed/34506916 http://dx.doi.org/10.1016/j.neuroimage.2021.118569 |
work_keys_str_mv | AT zuolianrui unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT deweyblakee unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT liuyihao unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT heyufan unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT newsomescottd unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT mowryellenm unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT resnicksusanm unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT princejerryl unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory AT carassaaron unsupervisedmrharmonizationbylearningdisentangledrepresentationsusinginformationbottlenecktheory |