Cargando…
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses In this paper, we propose an unsupervised MR image harmonization approach, CA...
Autores principales: | Zuo, Lianrui, Dewey, Blake E., Liu, Yihao, He, Yufan, Newsome, Scott D., Mowry, Ellen M., Resnick, Susan M., Prince, Jerry L., Carass, Aaron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473284/ https://www.ncbi.nlm.nih.gov/pubmed/34506916 http://dx.doi.org/10.1016/j.neuroimage.2021.118569 |
Ejemplares similares
-
Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data
por: Liu, Yihao, et al.
Publicado: (2022) -
Unsupervised Learning of Disentangled Representation via Auto-Encoding: A Survey
por: Eddahmani, Ikram, et al.
Publicado: (2023) -
Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex
por: Leigh, Deborah M., et al.
Publicado: (2021) -
Longitudinal analysis of regional cerebellum volumes during normal aging
por: Han, Shuo, et al.
Publicado: (2020) -
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020)