Cargando…
ReMiND: Recovery of Missing Neuroimaging using Diffusion Models with Application to Alzheimer’s Disease
OBJECTIVE: Missing data is a significant challenge in medical research. In longitudinal studies of Alzheimer’s disease (AD) where structural magnetic resonance imaging (MRI) is collected from individuals at multiple time points, participants may miss a study visit or drop out. Additionally, technica...
Autores principales: | Yuan, Chenxi, Duan, Jinhao, Tustison, Nicholas J., Xu, Kaidi, Hubbard, Rebecca A., Linn, Kristin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473806/ https://www.ncbi.nlm.nih.gov/pubmed/37662259 http://dx.doi.org/10.1101/2023.08.16.23294169 |
Ejemplares similares
-
Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression
por: Yuan, Chenxi, et al.
Publicado: (2023) -
ReMIND: The Brain Resection Multimodal Imaging Database
por: Juvekar, Parikshit, et al.
Publicado: (2023) -
Evaluation of an Automated Reminder System for Reducing Missed MRI
Appointments
por: Kenniff, James, et al.
Publicado: (2023) -
ANTsX neuroimaging-derived structural phenotypes of UK Biobank
por: Tustison, Nicholas J., et al.
Publicado: (2023) -
Mitigating site effects in covariance for machine learning in neuroimaging data
por: Chen, Andrew A., et al.
Publicado: (2021)