Cargando…
REFINED-CNN framework for survival prediction with high-dimensional features
Robust and accurate survival prediction of clinical trials using high-throughput genomics data is a fundamental challenge in pharmacogenomics. Current machine learning tools often provide limited predictive performance and model interpretation in these settings. In the present study, we extend the a...
Autores principales: | Bazgir, Omid, Lu, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474067/ https://www.ncbi.nlm.nih.gov/pubmed/37664631 http://dx.doi.org/10.1016/j.isci.2023.107627 |
Ejemplares similares
-
Federated learning framework integrating REFINED CNN and Deep Regression Forests
por: Nolte, Daniel, et al.
Publicado: (2023) -
Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction
por: Bazgir, Omid, et al.
Publicado: (2021) -
Mask-Refined R-CNN: A Network for Refining Object Details in Instance Segmentation
por: Zhang, Yiqing, et al.
Publicado: (2020) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020) -
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
por: Zhang, Jin, et al.
Publicado: (2020)