Cargando…
Applying federated learning to combat food fraud in food supply chains
Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in particularly data driven Bayesian Networ...
Autores principales: | Gavai, Anand, Bouzembrak, Yamine, Mu, Wenjuan, Martin, Frank, Kaliyaperumal, Rajaram, van Soest, Johan, Choudhury, Ananya, Heringa, Jaap, Dekker, Andre, Marvin, Hans J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474077/ https://www.ncbi.nlm.nih.gov/pubmed/37658060 http://dx.doi.org/10.1038/s41538-023-00220-3 |
Ejemplares similares
-
Author Correction: Applying federated learning to combat food fraud in food supply chains
por: Gavai, Anand, et al.
Publicado: (2023) -
Role of analytical testing for food fraud risk mitigation – A commentary on implementation of analytical fraud testing: Role of analytical testing for food fraud mitigation
por: Butler, Francis, et al.
Publicado: (2021) -
Automatic classification of literature in systematic reviews on food safety using machine learning
por: van den Bulk, Leonieke M., et al.
Publicado: (2021) -
Food Fraud Vulnerability Assessment in the Chinese Baijiu Supply Chain
por: Wang, Yiqin, et al.
Publicado: (2023) -
Food fraud and mitigating strategies of UK food supply chain during COVID-19
por: Soon-Sinclair, Jan Mei, et al.
Publicado: (2023)