Cargando…

Neural tuning instantiates prior expectations in the human visual system

Perception is often modelled as a process of active inference, whereby prior expectations are combined with noisy sensory measurements to estimate the structure of the world. This mathematical framework has proven critical to understanding perception, cognition, motor control, and social interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Harrison, William J., Bays, Paul M., Rideaux, Reuben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474129/
https://www.ncbi.nlm.nih.gov/pubmed/37658039
http://dx.doi.org/10.1038/s41467-023-41027-w
Descripción
Sumario:Perception is often modelled as a process of active inference, whereby prior expectations are combined with noisy sensory measurements to estimate the structure of the world. This mathematical framework has proven critical to understanding perception, cognition, motor control, and social interaction. While theoretical work has shown how priors can be computed from environmental statistics, their neural instantiation could be realised through multiple competing encoding schemes. Using a data-driven approach, here we extract the brain’s representation of visual orientation and compare this with simulations from different sensory coding schemes. We found that the tuning of the human visual system is highly conditional on stimulus-specific variations in a way that is not predicted by previous proposals. We further show that the adopted encoding scheme effectively embeds an environmental prior for natural image statistics within the sensory measurement, providing the functional architecture necessary for optimal inference in the earliest stages of cortical processing.