Cargando…
AIVariant: a deep learning-based somatic variant detector for highly contaminated tumor samples
The detection of somatic DNA variants in tumor samples with low tumor purity or sequencing depth remains a daunting challenge despite numerous attempts to address this problem. In this study, we constructed a substantially extended set of actual positive variants originating from a wide range of tum...
Autores principales: | Jeon, Hyeonseong, Ahn, Junhak, Na, Byunggook, Hong, Soona, Sael, Lee, Kim, Sun, Yoon, Sungroh, Baek, Daehyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474289/ https://www.ncbi.nlm.nih.gov/pubmed/37524869 http://dx.doi.org/10.1038/s12276-023-01049-2 |
Ejemplares similares
-
Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus)
por: Song, Hyojin, et al.
Publicado: (2019) -
Development of a Dunaliella tertiolecta Strain with Increased Zeaxanthin Content Using Random Mutagenesis
por: Kim, Minjae, et al.
Publicado: (2017) -
An interaction between eIF4A3 and eIF3g drives the internal initiation of translation
por: Chang, Jeeyoon, et al.
Publicado: (2023) -
Towards accelerating model parallelism in distributed deep learning systems
por: Choi, Hyeonseong, et al.
Publicado: (2023) -
A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome
por: Kim, Doyeon, et al.
Publicado: (2021)